

GnatSigh News (all the news that fits)

- Website http://home.fnal.gov/~rocky/NS102/
- · Shapley-Curtis information at

http://antwrp.gsfc.nasa.gov/diamond_jubilee/debate.html

Messier Objects

http://www.seds.org/messier/

· Well tempered

http://www.bachfaq1.orgf/welltemp.html

- Today: Concert "Car horn in Ab"
- · Thursday: The death of Elvis

Lab this week: Geometry of the Universe

Doppler Shift

 $\lambda_0 = c\Delta t = \text{rest wavelength}$

 $\lambda = c \Delta t \pm v \Delta t = detected wavelength$

$$c \, \Delta t = \lambda_0 \qquad \Rightarrow \qquad \lambda = \lambda_0 \pm \mathbf{v} \, \Delta t$$

$$\Delta t = \frac{\lambda_0}{c} \qquad \Rightarrow \qquad \lambda = \lambda_0 \pm \frac{\mathbf{v}}{c} \lambda_0$$

Frequency

 $\left| \frac{1}{\Delta t} \right| = \text{frequency} = v \quad \text{(nu)}$

(usually measured in $Hz = s^{-1}$)

$$c \Delta t = \lambda \Rightarrow c = \frac{\lambda}{\Delta t} \Rightarrow c = \lambda v$$

$$c = \lambda v$$

velocity = wavelength × frequency

$$\frac{\text{cm}}{\text{s}} = \text{cm} \times \text{s}^{-1}$$

Doppler Shift

 $\lambda_0 = \text{ emitted wavelength}$ $\lambda = \frac{\mathbf{c}}{-} \Rightarrow 0$

 λ = detected wavelength

$$\lambda = \frac{c}{\nu} \Rightarrow \lambda \propto \frac{1}{\nu}$$

$$\lambda = \lambda_0 \left(1 \pm \frac{\mathbf{v}}{c} \right)$$

+ → receding (longer λ) - → approaching (shorter λ)

$$\frac{c}{v} = \frac{c}{v_0} \left(1 \pm \frac{v}{c} \right)$$

 $+ \rightarrow \text{receding}$ (longer λ)

 $- \rightarrow$ approaching (shorter λ)

$$v = \frac{v_0}{1 \pm \frac{v}{1}}$$

 $+ \rightarrow$ receding (smaller ν)

– \rightarrow approaching (longer ν)

Nothing exists but atoms and empty space; everything else is opinion.

- Demokritos

Everything has been thought of before. The problem is to think of it again.

- Goethe

The red shift $\frac{\lambda}{\lambda_0} = 1 + \frac{\mathrm{v}}{c}$ $\lambda_0 \text{ emitted wavelength }$ v recessional velocity c velocity of light $\frac{\lambda}{\lambda_0} - 1 = \frac{\mathrm{v}}{c}$ $(\lambda > \lambda_0)$

$$\lambda = 6,000$$
 Angstroms $\lambda_0 = 5,000$ Angstroms

$$\frac{\mathbf{v}}{c} = \frac{\lambda - \lambda_0}{\lambda_0} = \frac{1000}{5000} = 0.2$$

$$v = 0.2c \implies v = 60,000 \text{ km s}^{-1}$$